Math 474 - Homework \# 4 Random Variables, Expected Value, Games

Part 1 - Calculating expected value

1. (a) Suppose you roll an 6 -sided die. If you roll a 1 or 5 then you win $\$ 1$. If you roll a 2 or 4 or 6 then you win $\$ 5$. If you roll a 3 then you lose $\$ 15$. What is the expected value of this game?
(b) Suppose you have the same payouts as in part (a) of this problem, but instead you have a weighted non-fair 6 -sided die. You know that the probabilities of each number are: 1 and 5 have probability $1 / 6$ each, 2 and 4 and 6 have probabilities $1 / 12$ each, and 3 has probability $5 / 12$. What is the expected value of this game?
2. Suppose there are two coins. If you flip coin A it will land on heads with probability 0.6 and tails with probability 0.4 . If you flip coin B it will land on heads with probability 0.7 and tails with probability 0.3 .

Assume that the two coins outcomes are independent of each other. The experiment that you perform is you first flip coin A and then you flip coin B.
Let X denote the number of heads the occur when you flip the two coins. Thus X can equal 0,1 , or 2 .
(a) Find $P(X=0), P(X=1), P(X=2)$.
(b) Find $E[X]$.
3. A gambling books recommends the following "winning strategy" for the game of roulette. Here we will use the American wheel that has 0 and 00 on it.

It recommends that a gambler bet $\$ 1$ on red. If red appears then the gambler should take their $\$ 1$ profit and quit. If the gambler loses the bet, then they should play the game two more times and make additional bets of $\$ 1$ on red on each of the next two spins of the roulette wheel and then quit. Let X denote the gambler's winnings or loses doing this strategy.

Recall that in Roulette a bet of red is paid 1:1. That is you get $\$ 1$ for every $\$ 1$ bet.
(a) Find $P(X>0)$, that is the probability that the gambler will win some money doing this.
(b) Are you convinced that this is a "winning" strategy? Explain your answer. [Hint: Calculate $E[X]$]
4. Suppose from a standard 52 -card deck you are given the following five cards: $4 \bigcirc, 10 \circlearrowleft, Q \bigcirc, 3 \boldsymbol{\uparrow}, 2 \boldsymbol{s}$. Suppose you now discard the $3 \boldsymbol{\$}$ and 2\% from your hand (but keep the other three cards) and ask for two more cards.
(a) What is the probability that you get two more hearts so you have a flush (ie a hand with all hearts in it)?
(b) Suppose someone says: If you get a flush I'll pay you $\$ 500$. But if you don't you have to pay me $\$ 20$. Do you take the bet?
5. Two balls are chosen randomly at the same time from a bag containing 8 white balls, 4 black balls, and 2 orange balls. Suppose that we win $\$ 2$ for each black ball selected and we lose $\$ 1$ for each white ball selected. You don't win or lose anything for each orange ball. Let X denote the winnings or loses of this game.
(a) Calculate the probabilities of all the possible outcomes. Calculate how much won or lost in each possible outcome.
(b) Calculate $E[X]$.
6. The following game is called Chuck-a-luck. It works as follows. You pick a number out of $1,2,3,4,5$, or 6 and bet $\$ 1$ on that number. Three giant 6 -sided dice are then rolled in a spinning cage. You then win $\$ 1$ for every time that your number appears on the dice. But you lose your $\$ 1$ if your number doesn't appear at all. For example, suppose that you you pick the number 1 as your number. Suppose that the dice show $1,5,1$. Then you win $\$ 2$. If the dice showed $3,1,6$ then you would win $\$ 1$. If the dice showed $3,2,6$, then you would lose your $\$ 1$ bet.
(a) Let X denote the amount of money lost or won. Let $p(i)=P(X=$ $i)$ be the probability function for X. Calculate $p(-1), p(1), p(2)$, $p(3)$.
(b) Draw a picture of p.
(c) Draw a picture of the cumulative distribution function F where $F(i)=P(X \leq i)$.
(d) What is the expected value of this game?

Part 2 - You do NOT have to do problems 7 and 8 below.
They involve infinite probability spaces and won't be on any exam. Do them if interested.
7. Suppose that you flip a coin continually until a head occurs. Suppose that someone says: If you don't get a heads until you roll at least 3 tails then I'll pay you $\$ 5$. But if a heads occurs in the first three rolls then you must pay me $\$ 1$. Do you take the bet?
8. Consider the following experiment. Suppose we roll an 4-sided dice continually. We don't stop until a 3 is rolled.
(a) What is a sample space S and a probability function P for such an experiment? Verify that you have a probability space.
(b) Let A be the event that a 3 is rolled on the 3rd roll. Calculate $P(A)$.
(c) Let B be the event that a 3 is rolled within the first 3 rolls. Calculate $P(B)$.
(d) Suppose someone says this before the experiment starts: If a 3 is rolled within the first 3 rolls then I will pay you $\$ 5$, but if it doesn't then you have to pay me $\$ 6$. Do you take the bet?

